

Examining the association between pain and opioid agonist treatment status

Jie (Jenna) Yang ^{1, *}, Louisa Picco¹, Paul Dietze ^{2,3}, Peter Higgs ^{2,4}, Suzanne Nielsen¹

¹Monash Addiction Research Centre, Eastern Health Clinical School, Monash University, Melbourne, Australia,
 ²Behaviours and Health Risks, Burnet Institute, Melbourne, Australia,
 ³National Drug Research Institute, Curtin University, Melbourne, Australia,
 ⁴Department of Public Health, La Trobe University, Melbourne, Australia

* PhD candidate, email: jie.yang@monash.edu

Disclosure of Interest

- We acknowledge SuperMIX staff for their data collection and provision.
- SuperMIX establishment was funded by the Colonial Foundation Trust with ongoing funding from the Australian National Health and Medical Research Council (NHMRC) (#2023690).
- JY is the recipient of a China Scholarship Council (CSC) Scholarship (#202108440067).
 LP is the recipient of the NHMRC Emerging Leadership Fellowship (#2016909).
 SN is the recipient of an NHMRC Investigator Fellowship (L2, #2025894).
- The Burnet Institute gratefully acknowledges support from the Victorian Operational Infrastructure Fund.

Study Overview

Study background:

- Pain is highly prevalent among people seeking/receiving OAT
- Pain is often undertreated as a comorbid condition among peopl
- Pain relief efficacies of OAT medicines remain unclear

1.6.2 Mean dose of methadone (mg/day)

Delorme (2021, France)	66.1	38.3	108	62.5	41.6	235	6.4%	3.60 [-5.37, 12.5
Dennis (2014, Canada)	84.6	51.5	58	85.7	50.1	177	2.9%	-1.10 [-16.27, 14.0
Dimeola (2022, USA)	80.5	31.7	258	74.1	31.7	194	10.3%	6.40 [0.50, 12.3
Jamison (2000, USA)	82.3	34.5	152	65.7	28.3	96	7.6%	16.60 [8.72, 24.4
Latif (2021, Norway)	98.5	35.8	161	89.6	26.9	84	7.4%	8.90 [0.92, 16.8
Peles (2005, Israel)	164.2	59.6	94	147.1	52.8	76	2.4%	17.10 [0.19, 34.0
Peles (2009, Israel)	160.3	74.4	18	139.9	65.9	25	0.4%	20.40 [-22.60, 63.4
Subtotal (95% CI)			849			887	37.3%	8.74 [4.19, 13.2
Heterogeneity: $Tau^2 = 10$.46; Chi ²	= 8.5	2, df =	6 (P = 0)	0.20); I ²	= 30%		

Test for overall effect: Z = 3.76 (P = 0.0002)

			Proportion	Weight
orest plot (34 studies)	CP (n)	Total (N)	with 95% CI	(%)
eeking OAT (4 studies)				
arry (2009, USA)	142	293	0.48 [0.43, 0.5	3.07
arry (2013, USA)	88	244	0.36 [0.30, 0.4	3.06
llis (2021, USA)	1,146	2,756	0.42 [0.40, 0.4	3] 3.20
sui (2010, USA)	69	140	0.49 [0.41, 0.5	8] 2.93
eterogeneity: $\tau^2 = 0.00$, $I^2 = 7$	4.57%, H ²	= 3.93	0.43 [0.38, 0.4	[8]
est of $\theta_i = \theta_j$: Q(3) = 11.80, P =	= 0.01			
est of $\theta = 0$: $z = 17.00, P = 0.0$	00			
n OAT (30 studies)				
chambault (2022, Canada)	70	193	0.36 [0.29, 0.4	3] 3.02
arry (2008, USA)	258	956	0.27 [0.24, 0.3	3.18
arry (2009, USA)	56	150	0.37 [0.30, 0.4	[5] 2.96
alorme (2021, France)	169	509	0.33 [0.29, 0.3	3.14
ennis (2016, Canada)	154	444	0.35 [0.30, 0.3	9] 3.13
meola (2022, USA)	258	452	0.57 [0.53, 0.6	3.12
u (2022, USA)	87	355	0.25 [0.20, 0.2	9] 3.12
unn (2015, USA)	75	179	0.42 [0.35, 0.4	9] 2.99
x (2012, USA)	31	82	0.38 [0.27, 0.4	8] 2.78
enn (2016, USA)	379	611	• 0.62 [0.58, 0.6	6] 3.15
aimer (2015, USA)	72	185	0.39 [0.32, 0.4	6] 3.00
ggins (2018, UK)	246	467	0.53 [0.48, 0.5	3.12
mison (2000, USA)	152	248	• 0.61 [0.55, 0.6	37] 3.05
rance (2015, Australia)	148	290	0.51 [0.45, 0.5	3.07
tif (2021, Norway)	259	463	0.56 [0.51, 0.6	3.12
orie (2021, USA)	78	164	0.48 [0.40, 0.5	5] 2.97
un (2021, USA)	20	56	0.36 [0.23, 0.4	8] 2.63
aji (2017, Canada)	252	627	0.40 [0.36, 0.4	4] 3.15
ck (2021, USA)	10	28	0.36 [0.18, 0.5	3] 2.23
eles (2005, Israel)	94	170	0.55 [0.48, 0.6	3] 2.98
eles (2009, Israel)	18	44	0.41 [0.26, 0.5	5] 2.48
ales (2011, Israel)	18	31	0.58 [0.41, 0.7	[5] 2.25
eles (2016, Israel)	41	68	0.60 [0.49, 0.7	2] 2.70
tell (2019, USA)	9	12	0.75 [0.51, 0.9	9] 1.74
osenblum (2003, USA)	143	390	0.37 [0.32, 0.4	1] 3.11
senblum (2007, USA)	2,192	5,663	0.39 [0.37, 0.4	0] 3.21
anger (2018, Canada)	373	976	0.38 [0.35. 0.4	3.17
ein (2015, USA)	159	328	0.48 [0.43, 0.5	[4] 3.09
ui (2016, USA)	71	105	0.68 [0.59, 0.7	7] 2.89
ld (2020, Norway)	2,011	9,634	0.21 [0.20, 0.2	2] 3.21
eterogeneity: $\tau^2 = 0.02$. $I^2 = 9$	8.35%, H ²	= 60.78	0.44 [0.39. 0.5	50]
st of $\theta_1 = \theta_1$: Q(29) = 1762.66	P = 0.00			201 7 .5
st of $\theta = 0$: $z = 16.39$, $P = 0.0$	00			
verall			0.4410.40 0.4	191
eterogeneity: $\tau^2 = 0.02$, $I^2 = 9$	8.29%, H ²	= 58.31	0.44 [0.40, 0.4	
st of 0, = 0; Q(33) = 1924.23	P = 0.00			
p = 0; z = 18.21, P = 0.0	00			

Test of group differences: $Q_b(1) = 0.09$, P = 0.76

Random-effects DerSimonian-Laird model

D

NASH ersity

Reference:

Yang, J., Jung, M., Picco, L., Grist, E., Lloyd-Jones, M., Giummarra, M., & Nielsen, S. (2024). Pain in people seeking and receiving opioid agonist treatment: A systematic review and meta-analysis of prevalence and correlates. *Addiction*.

Study Overview

Study aim:

• To explore the correlates of pain and how pain severity changes in people with OUD as they move in and out of opioid agonist treatment (OAT)

Study questions:

- What are the correlates of pain?
- Does pain severity change with current OAT status?
- Does pain severity vary with using different OAT medicines (i.e. buprenorphine vs methadone)?

Longitudinal cohort:

o Melbourne Injecting Drug User Cohort Study (SuperMIX) cohort data

Research Design

Participant eligibility:

 \circ Ever been in OAT for at least one time point (2008-2024)

Analysis methods:

- Baseline dataset: Ordinal logistic regression
- o Longitudinal dataset: Multilevel ordinal logistic regression

Outcome variable:

• Current pain was measured by a 6-point Likert Scale (none to very severe pain in the past 4 weeks)

Covariates of interest:

- Demographics
 - Gender, age
 - Country of birth, employment (yes/no)
 - Homelessness (yes/no)

Covariates of interest:

• *Physical and mental health*

- Overall physical health (measured by a 6-point Likert Scale)
- Physical activity interference (measured by a 5-point Likert Scale)
- Daily work interference (measured by a 5-point Likert Scale)
- Social activity interference (measured by a 5-point Likert Scale)
- Emotional problems (measured by a 5-point Likert Scale)
- Sleep difficulties (yes/no)

Covariates of interest:

- Substance use history
 - Current prescribed buprenorphine and methadone use (yes/no) (last month)
 - Times of injecting non-prescribed opioids (last week)
 - Heroin use (yes/no) (last month)
 - Other non-prescribed opioid use (i.e., methadone, buprenorphine, morphine, and oxycodone) (last month)
 - Benzodiazepine, antipsychotic, antidepressant use (yes/no) (last month)

Participant Recruitment Flow Chart

Baseline analysis: Ordinal regression

TABLE 1 Baseline demographic and clinical characteristics of participants (N=1,328), and factors associated with pain severity using ordinal

regression model (N=1168)

Variables		No pain	Mild pain	Moderate pain	Severe pain	Odds ratio v	vith 95% Cl		
		n (%)	n (%)	n (%)	n (%)				
Ν		452 (34.0)	367 (27.6)	257 (19.4)	252 (19.0)	Unadjusted	Adjusted		
Male ^a	No	121 (26.8)	124 (33.8)	85 (33.1)	99 (39.3)	Ref	Ref		
	Yes	330 (73.2)	243 (66.2)	172 (66.9)	153 (60.7)	0.71 (0.57, 0.87)	0.77 (0.60, 0.98)		
Age at baseline ^b	Mean (SD), years	34.8 (9.7)	35.4 (10.2)	38.8 (11.6)	39.6 (10.7)	1.03 (1.02, 1.04)	1.03 (1.02, 1.04)		
Born in Australia ^c	No	87 (19.3)	56 (15.3)	46 (17.9)	28 (11.1)	Ref	Ref	0	Mean age: 36.7 years
	Yes	364 (80.7)	311 (84.7)	211 (82.1)	224 (88.9)	1.37 (1.05, 1.78)	1.11 (0.82, 1.50)		fileun uger sonr jeuns
Education, ≥Year 12 ^d	No	409 (90.5)	321 (87.5)	220 (85.6)	205 (81.7)	Ref	Ref		Male (67.7%) and unemployed
	Yes	43 (9.5)	46 (12.5)	37 (14.4)	46 (18.3)	1.64 (1.23, 2.19)	1.06 (0.75, 1.50)		Male (07.770) and anomphoyee
Employmente	No	395 (87.4)	320 (87.4)	230 (89.5)	228 (90.5)	Ref	Ref		(88.1%)
	Yes	57 (12.6)	46 (12.6)	27 (10.5)	24 (9.5)	0.82 (0.60, 1.10)	1.11 (0.78, 1.57)		(00.470)
Homelessness ^f	No	414 (92.2)	337 (92.3)	229 (89.1)	219 (87.3)	Ref	Ref		$\mathbf{U}_{\mathbf{a}}$ if $\mathbf{u}_{\mathbf{a}}$ as a summary in $\mathbf{O} \mathbf{A} \mathbf{T}$
	Yes	35 (7.8)	28 (7.7)	28 (10.9)	32 (12.7)	1.49 (1.07, 2.09)	1.25 (0.83, 1.88)	0	nan were currently in OAT
HIV status ^g	Negative	393 (93.1)	326 (94.2)	217 (93.9)	218 (92.0)	Ref	Ref		
	Positive	2 (0.5)	3 (0.9)	4 (1.7)	2 (0.8)	1.66 (0.61, 4.51)	2.19 (0.72, 6.67)	0	Pain at any levels: 66%; severe
	Never had a test	27 (6.4)	17 (4.9)	10 (4.3)	17 (7.2)	0.99 (0.63, 1.54)	1.22 (0.75, 2.00)		
Overall physical health	Good	332 (73.5)	208 (56.8)	95 (37.0)	61 (24.2)	Ref	Ref		pain:19%
rating ^h	Fair	90 (19.9)	112 (30.6)	99 (38.5)	81 (32.1)	2.95 (2.34, 3.72)	1.89 (1.44, 2.47)		1
	Poor	30 (6.6)	46 (12.6)	63 (24.5)	110 (43.7)	7.89 (5.94, 10.48)	2.69 (1.89, 3.82)		
Physical activity	Not at all/Minimal	422 (93.8)	254 (69.6)	108 (42.0)	78 (31.1)	Ref	Ref		
interference ⁱ	Moderate	12 (2.7)	84 (23.0)	88 (34.2)	59 (23.5)	5.89 (4.52, 7.67)	2.97 (2.08, 4.24)		
	Quite a lot/Extremely	16 (3.6)	27 (7.4)	61 (23.7)	114 (45.4)	15.00 (11.00, 20.45)	3.94 (2.41, 6.44)		
Daily work interference ^j	Not at all/Minimal	413 (91.6)	265 (72.8)	126 (49.0)	75 (30.0)	Ref	Ref		
	Moderate	21 (4.7)	64 (17.6)	64 (24.9)	44 (17.6)	4.47 (3.36, 5.93)	1.66 (1.13, 2.43)		
	Quite a lot/ Extremely	17 (3.8)	35 (9.6)	67 (26.1)	131 (52.4)	13.34 (9.96, 17.88)	2.76 (1.73, 4.40)		
Social activity	Not at all/Minimal	309 (69.0)	168 (46.4)	69 (27.1)	66 (26.4)	Ref	Ref		
interference ^k	Moderate	69 (15.4)	114 (31.5)	88 (34.5)	59 (23.6)	2.96 (2.31, 3.78)	1.29 (0.95, 1.76)		
	Quite a lot/ Extremely	70 (15.6)	80 (22 1)	98 (38 4)	125 (50.0)	5.08 (3.96, 6.51)	1 23 (0 85, 1 78)		
Emotional problems ⁱ	Not at all/Minimal	288 (64.4)	160 (44.1)	87 (34.3)	56 (22.6)	Ref	Ref		Rurne
	Moderate	55 (12.3)	70 (19.3)	54 (21.3)	41 (16.5)	2.50 (1.89, 3.31)	1.72 (1.21, 2.44)		Durne
	Quite a lot/ Extremely	104 (23.3)	133 (36.6)	113 (44.5)	151 (60.9)	3.74 (2.98, 4.68)	1.67 (1.18, 2.35)		
Sleep difficulties ^m	No	397 (88.0)	297 (81.4)	205 (79.8)	192 (76.2)	Ref	Ref		
	Yes	54 (12.0)	68 (18.6)	52 (20.2)	60 (23.8)	1.70 (1.32, 2.19)	1.22 (0.91, 1.63)		MONAS
Current methadone ue ⁿ	No	308 (68.1)	230 (62.8)	159 (61.9)	163 (64.9)	Ref	Ref		Universit
	Yes	144 (31.9)	136 (37.2)	98 (38.1)	88 (35.1)	1.14 (0.93, 1.40)	1.13 (0.88, 1.46)		

Baseline analysis: Ordinal regression

Variables		No pain	Mild pain	Moderate pain	Severe pain	Odds ratio with 95% CI	
		n (%)	n (%)	n (%)	n (%)		
Current buprenorphine	No	381 (85.4)	312 (85.7)	216 (84.4)	204 (82.9)	Ref	Ref
use°	Yes	65 (14.6)	52 (14.3)	40 (15.6)	42 (17.1)	1.13 (0.86, 1.48)	1.16 (0.83, 1.61)
Non-prescribed opioid	0	101 (22.3%)	69 (18.8%)	45 (17.5%)	52 (20.6%)	Ref	Ref
injection, times	1~7	206 (45.6%)	176 (48.0%)	119 (46.3%)	125 (49.6%)	1.16 (0.89, 1.51)	1.36 (0.94, 1.98)
	>7	145 (32.1%)	122 (33.2%)	93 (36.2%)	75 (29.8%)	1.11 (0.84, 1.46)	1.08 (0.73, 1.59)
Heorin use	No	69 (15.3)	42 (11.4)	26 (10.1)	44 (17.5)	Ref	Ref
	Yes	383 (84.7)	325 (88.6)	231 (89.9)	208 (82.5)	1.01 (0.76, 1.36)	0.90 (0.59, 1.37)
Other non-prescribed	No	335 (74.8)	245 (67.5)	148 (58.5)	137 (55.5)	Ref	Ref
opioid use ^p	Yes	113 (25.2)	118 (32.5)	105 (41.5)	110 (44.5)	1.85 (1.50, 2.27)	2.13 (1.67, 2.73)
Benzodiazepine use ^q	No	230 (50.9)	157 (42.9)	90 (35.2)	89 (35.3)	Ref	Ref
	Yes	222 (49.1)	209 (57.1)	166 (64.8)	163 (64.7)	1.62 (1.33, 1.98)	1.16 (0.92, 1.47)
Antipsychotics use ^r	No	383 (84.9)	297 (81.1)	222 (86.7)	199 (79.6)	Ref	Ref
	Yes	68 (15.1)	69 (18.9)	34 (13.3)	51 (20.4)	1.16 (0.89, 1.50)	0.98 (0.72, 1.34)
Antidepressant uses	No	381 (84.9)	306 (83.4)	216 (84.4)	182 (72.2)	Ref	Ref
	Yes	68 (15.1)	61 (16.6)	40 (15.6)	70 (27.8)	1.56 (1.21, 2.02)	1.06 (0.78, 1.44)

Abbreviation: CI, Confidence interval; SD, standard deviation.

an = 1 missing, bn = 2 missing, 3 participants reported to be non-binary and were coded as not male.

 $^{c}n = 1$ missing, $^{d}n = 1$ missing, $^{e}n = 1$ missing, $^{f}n = 6$ missing, $^{g}n = 92$ missing, $^{h}n = 1$ missing, $^{i}n = 5$ missing, $^{i}n = 6$ missing, $^{k}n = 13$ missing, $^{h}n = 16$ missing, $^{m}n = 3$ missing miss

 $^{n}n = 2$ missing, $^{o}n = 16$ missing, $^{p}n = 17$ missing, $^{q}n = 2$ missing, $^{r}n = 5$ missing, $^{s}n = 4$ missing

Longitudinal Analysis: Multilevel regression

Burnet

Figure 2. Forest plot showing factors associated with changes of pain severity using multilevel ordinal logistic regression Abbreviations: CI, confidence interval.

WHY no associations between pain severity and OAT status?

An ongoing qualitative study.....

Exploring the pain treatment barriers and needs among people with chronic pain and in OAT

Q: Buprenorphine vs Methadone re pain relief "It [methadone] works better. It works better to a point. It works better till tonight I'll wake up in the middle of the night at two or three in the morning, and I'll have to have my methadone, you know, to... to be normal, to not be sick, you know what I mean...[drinking alcohol]. That's why I drink, too. I have my fridge full of beer." (Male,58 years)

Conclusions

Gender, age, physical and mental health, and substance use were associated with changes in pain severity

No association was observed between pain severity and current OAT status

OAT medicines are not enough to manage concurrent opioid dependence and pain

Need for co-designing a pain management program with consumers and healthcare providers

Burnet

Q&A

Jenna (Jie Yang) PhD candidate Email: jie.yang@monash.edu Research protocol: *https://osf.io/m5ws2/*

